Heat Rejection for Trough Rankine Cycles

Parabolic Trough Review Meeting February 14, 2006

Bruce Kelly

Nexant, Inc.

A Bechtel-Affiliated Company
San Francisco, California

Study Basis

- 88 MWe parabolic trough project, without thermal storage
- GateCycle Rankine cycle model
- Excelergy default performance and cost models, except for heat rejection systems
- Barstow weather data; 30 year average

Air Cooled Condenser

Thermodynamic Boundaries

• Carnot efficiency:
$$1 - \frac{T_{reject}}{T_{source}}$$

• With 700 °F source temperature at desert site:

$$\frac{Carnot_{104\ ^{o}F}}{Carnot_{68\ ^{o}F}} = 0.94$$

Air Cooled Condenser Surface Area

Cooling Tower Fan Power

Net Electric Generation

Levelized Energy Costs

Gross Plant Output 8 in. HgA Condenser Pressure Limit

Annual Water Demand

Conclusions

- Dry heat rejection imposes a 7 to 9 percent penalty on the levelized energy cost
- Raw water costs need to increase by about 10 for economic parity
- Solar thermal energy is expensive, but small cooling tower approach temperatures cannot be justified due to limited annual operating hours at dry bulb temperatures above 100 °F.